紫外線燈 uv燈 紫外線消毒燈 紫外線殺菌燈 紫外線殺菌燈管 紫外線消毒燈管 殺菌燈 uv燈 紫外線燈管 消毒燈 紫外線 uv 紫外燈 魚缸殺菌燈 消毒燈 紫外燈管 uv光氧燈管 殺菌燈水族殺菌燈
最佳回答:
uv就是紫外線..這就是噱頭,只不過用高能紫外線使廢物分解,原理相同
最佳回答:
水的消毒方法可分化學的和物理的兩種。
物理消毒方法有加熱法、紫外線法、超聲波等法。
化學方法有加氯法、臭氧法、重金屬離子法以及其他氧化劑法等。
其中以加氯法使用最為普遍,因為氯的消毒能力強,價格便宜,設備簡單,余氯測定方便;便于加量調節等優點而得到廣泛應用。
加氯法,除使用氯氣之外,還有氯的化合物,如次氯酸鈉、次氯酸鈣、氯胺類以最近國外在自來水廠中廣為應用的二氧化氯–這是一種比氯的氧化性能更為強烈的氧化劑。消毒還可以用非氧化型殺生物劑,如氯酚類消毒劑和季銨鹽類化合物。最近國外研制的二硫氰酸亞甲酯、鹽酸十二烷基胍、有機溴化物等,以及國內研制成功的NL-4,SQ8等都是有效的消毒劑。此外,早期使用的還有銅鹽,如硫酸銅等殺生劑,這此都屬于化學方法的消毒。
其他答案1:
一、水的消毒就是用化學和物理方法殺滅水中的病原體,以防止疾病傳染,維護人群健康。物理消毒法有加熱法、γ輻射法和紫外線照射法等;化學消毒法有投加重金屬離子(如銀和銅)、投加堿或酸、投加表面活性化學劑、投加氧化劑(氯及其化合物、溴、碘、臭氧)等的消毒法。在這些方法中以氧化劑消毒應用最廣,其中以氯及其化合物消毒尤為通用,其次是臭氧消毒。紫外線照射法和投加溴、碘及其化合物的方法用于小規模水廠或特殊設施(如游泳池)用水的消毒。
二、物理消毒介紹
紫外線消毒的生物學原理
a.飲用水紫外線消毒技術應用分析 氯消毒會產生具有致癌作用的氯化消毒副產物,而近些年來賈第蟲和隱孢子蟲的發現,使現有的氯消毒工藝面臨嚴峻的挑戰,人們開始尋找新的替代消毒技術有效地提高消毒效果,并且可以降低消毒過程中產生的副產物對人體健康的潛在危害,同時保證飲用水的微生物學安全性和化學安全性。在眾多的替代消毒技術中,由于紫外線消毒不添加任何化學物質、消毒效果好及不產生消毒副產物等優點而引起人們的重視。紫外線消毒的歷史非常悠久,在歐洲,飲用水紫外線消毒已有近百年的歷史。
1910年,法國的馬賽一家自來水廠最先安裝了一套紫外線消毒系統對飲用水進行消毒,到目前為止,西方發達國家已在污水處理廠安裝了近4000套大型紫外線消毒系統,應用該技術的廠家約占污水處理廠總數的10%。同時,至2001年底已有2000多家自來水廠采用了紫外消毒技術,占自來水廠總數的10%以上,并且大量的紫外消毒技術改造工程正在進行之中。由于紫外線消毒在環保及人身安全方面的突出優點,歐洲及北美的許多國家將紫外線消毒列為用水終端和用戶進水端及小型給水系統中的首選方法。尤其是發現自來水中存在隱孢子蟲后,美國已經將紫外消毒工藝作為自來水消毒的最佳手段寫入供水法規中。
紫外線位于X射線和可見光之間,在物理學上一般將紫外線分為真空紫外線區(<190nm)、遠紫外區(190-300nm)和近紫外區(300-400nm);按其生物學作用的差異,紫外線可分為UV-A(320-400nm)、UV-B(275-320nm)、UV-C(200-275nm)和真空紫外線部分。水處理中實際上是使用紫外線的UV-C部分,在該波段中260nm 附近已被證實是殺菌效率最高的紫外線。紫外線滅菌的原理是基于核酸對紫外線的吸收。紫外殺菌本質上是一個光化學過程,每一粒波長253.7nm的紫外線光子具有4.9eV的能量,紫外光子必須被吸收才具有活性。
核酸是一切生命體的基本物質和生命基礎,核酸分為核糖核酸(RNA)和脫氧核糖核酸(DNA)兩大類,其共同點是由磷酸二脂鍵按嘌呤與嘧啶堿基配對的原則而連接起來的多核苷酸鏈。當微生物體受到紫外線照射時,會吸收紫外線的能量,從而引起DNA的損傷,最常見的兩種損傷形式為環丁烷嘧啶二聚體(cyclobutane pyrimidine dimmer,CPD)和嘧啶-嘧啶酮光產物(pyrimidine pyrimidone photoproducts, PP)。當DNA受到紫外線照射后,相鄰的嘧啶堿基共價交聯形成環丁烷四圓環,使兩個堿基的5、6位雙鍵飽和,形成CPD。嘧啶-嘧啶酮光產物是通過5嘧啶的5和6位碳原子或3嘧啶的4位碳原子和位于4位碳的氧原子或亞氨基異構體間形成的二氧乙烷或氮雜丁烷4圓環而形成的,這些都是比較穩定的化學鍵,從而阻止了DNA的復制;另一方面,在紫外線的照射下可以產生自由基引起光電離,造成微生物不能復制繁殖,就會自然死亡或被人體免疫系統消滅,不會對人體造成危害,從而達到消毒的目的。
b.紫外線消毒對水中微生物的滅活效果紫外線消毒具有較高的微生物滅活效果,對水中多種微生物都具有良好的滅活效果,并且殺菌速度快,大多數都是在1秒之內。另外,紫外線消毒技術對近些年發現的致病性病原微生物賈第蟲和隱孢子蟲也具有良好的滅活效果。隱孢子蟲孢囊通過人畜的糞便排入環境,它們可在環境中存活很長時間,隱孢子蟲卵囊和賈孢子蟲孢囊比其它水傳染病源微生物的存活時間長,因而可引起多次疾病的爆發。隱孢子蟲引起的疾病非常嚴重,其普遍的的癥狀是腹瀉、嘔吐、低燒,類似流感的癥狀,而對免疫機能不健全的患者,如艾滋病患者,其疾病更為嚴重,導致死亡。
如1994年美國拉斯維加斯市爆發隱孢子蟲病,20名艾滋病患者死亡。近年來的研究表明,使用低壓汞燈和中壓汞燈的輻射劑量在30J/m2時,能滅活隱孢子蟲99.9 %以上,并且通過大量的實驗證明低壓汞燈和中壓汞燈均能有效地滅活隱孢子蟲。紫外線消毒對軍團菌也有良好的效果,Muraca比較了臭氧、紫外線和氯和加熱對軍團菌的滅活情況,紫外線和加熱(60度)1個小時產生了5log的滅活,氯和臭氧需5個小時才能達到同樣的滅活效果。
c.紫外線消毒與其它消毒方法的比較五種常用的消毒方法在消毒效果、費用及安全性方面的比較。從表中可以看出,幾種中化學消毒劑滅活微生物需要較長的時間,而紫外線消毒僅需幾秒鐘即可達到同樣的滅活效果。化學消毒劑都會產生一些對人體健康有害的消毒副產物,并且操作及管理也比較復雜,紫外線消毒在滅菌的過程中不產生消毒副產物,而且運行操作簡便,其基建投資及運行費用也低于其他幾種化學消毒方法。
d. 紫外線消毒應用的優缺點紫外線消毒工藝具有其他消毒工藝所無法比擬的優勢,克服了現有傳統消毒技術的缺點。歐洲許多國家以及北美的加拿大和美國已在九十年代分別修改了環境立法,在廢水處理后的消毒,以及飲用水的消毒上,推薦采用紫外線消毒技術。
紫外線消毒的優勢
(1) 紫外線消毒技術具有較高的殺菌效率,運行安全可靠。紫外線消毒對細菌和病毒等具有較高的滅活效率并且由于不投加任何化學藥劑,因此它不會對水體和周圍環境產生二次污染。
(2) 對隱孢子蟲和賈第蟲有特效消毒效果,常規的氯消毒工藝對隱孢子蟲和賈第蟲的滅活效果很低,并且在較高的氯投量下會產生大量的消毒副產物,而紫外線消毒在較低的紫外線劑量下對隱孢子蟲和賈第蟲就可以達到較高的滅活效果。
(3) 不產生有毒有害副產物,不增加飲用水的AOC含量。紫外線消毒不改變有機物的特性,并且由于不投加化學藥劑,不會產生對人體有害的副產物,并且不會增加AOC和BDOC等損害管網水生物穩定性的副產物。
(4) 能降低臭味和降解微量有機物,紫外線對水中多種微量有機物具有一定的降解能力,并且能夠降低水的臭和味。
(5) 占地面積小,運行維護簡單、費用低。對每天5萬噸污水用氯消毒來說,需建有一個130米長、3米寬的接觸渠。采用紫外線消毒只需20米長3米寬的面積;紫外線消毒運行維護簡單,運行成本低,可達每噸水僅4厘人民幣甚至更低,其性能價格比具有很大優勢。(6) 消毒效果受水溫、pH影響小。
紫外線消毒技術在工程應用中缺點
主要有以下幾個方面:
(1) 無持續殺菌能力,消毒后的水如果遇到新的污染源,會再次被污染,需與氯配合使用;(2) 濁度及水中懸浮物對紫外殺菌有較大影響,降低消毒效果;
(3) 紫外燈套管容易結垢,影響紫外光的透出和殺菌效果,因此需要對套管進行定期的清洗以及采取表面降溫措施來防止管垢的形成;
(4) 細菌的復活現象,一些細菌被紫外照射失活的病毒細菌可通過光的協助修復自身被破壞的組織,達到復活目的,另外一些細菌可能存在著暗復活現象(無需光照);
(5) 國內使用經驗少,在國內,雖然工程上已經逐漸開始使用紫外線系統,但是對于紫外線消毒技術的研究并沒有完全開展起來,對于紫外線消毒的應用也還存在較多問題。
紫外線消毒技術應用前景
紫外線消毒具有廣譜性,對多種病源微生物都有較好的作用效果。歐洲許多國家以及北美的加拿大和美國已在九十年代分別修改了環境立法,在廢水處理后的消毒以及飲用水的消毒上,都推薦采用紫外線消毒技術。目前紫外線在飲用水消毒、再生回用水消毒、生活污水、工業廢水等的消毒處理中得到了一定的應用,盡管紫外線消毒技術存在無持久殺菌能力、細菌光修復問題及燈管的使用壽命等問題,但是相信隨著人們對紫外線消毒技術研究的不斷深入,殺菌效率更高的中壓燈、脈沖燈的出現,燈管使用壽命的延長,以及對紫外線消毒系統設計研究的深入,紫外線消毒裝置產品的商業化、國產化,綠色環保高效的紫外線消毒技術在我國飲用水消毒中將具有良好的應用前景。總之,各種消毒劑均有其自身的優、缺點,應根據原水、水廠特點有針對性地加以應用
三、化學消毒介紹
飲用水中常見的消毒工藝包括液氯、氯胺、二氧化氯、臭氧、紫外線和膜消毒等.分析了各種消毒工藝的機理、運行特點和對各種病原微生物的處理效率.飲用水深度凈化工藝能夠很好地去除水中消毒副產物前驅物質及病原微生物,提出以氯胺或二氧化氯作為最終的消毒劑,而臭氧氧化可以作為預處理的處理方案.分析了紫外線消毒技術的應用范圍.
其他答案2:
水的消毒方法可分化學的和物理的兩種。物理消毒方法有加熱法、紫外線法、超聲波等法。化學方法有加氯法、臭氧法、重金屬離子法以及其他氧化劑法等。其中以加氯法使用最為普遍,因為氯的消毒能力強,價格便宜,設備簡單,余氯測定方便;便于加量調節等優點而得到廣泛應用。
加氯法,除使用氯氣之外,還有氯的化合物,如次氯酸鈉、次氯酸鈣、氯胺類以最近國外在自來水廠中廣為應用的二氧化氯–這是一種比氯的氧化性能更為
強烈的氧化劑。消毒還可以用非氧化型殺生物劑,如氯酚類消毒劑和季銨鹽類化合物。最近國外研制的二硫氰酸亞甲酯、鹽酸十二烷基胍、有機溴化物等,以及國內
研制成功的NL-4,SQ8等都是有效的消毒劑。此外,早期使用的還有銅鹽,如硫酸銅等殺生劑,這此都屬于化學方法的消毒。
有污水需要處理的單位,如需了解完整污水處理方案或報價,可以通過污水寶發布方案報價海選公告;全國幾千家環保公司供您選擇,污水寶資深工程師團隊幫您尋找最省錢的污水處理方案,貨比三家花最少的錢將污水處理達標。
最佳回答:
UV紫外線光解和等離子技術是現今應用于有機廢氣降解最常用的兩種方法。采用這兩種辦法,都能將廢氣中的有機成份,分解為無害的水及二氧化碳,并預防了二次污染。但這兩種方法,仍各有優缺點。
UV光解是利用特殊的低壓紫外燈管能同時發射出185nm紫外線和254nm紫外線的雙光譜特性。燈管發射出的185nm紫外線,能觸發空氣中的O2(氧),轉化為O3(臭氧)。臭氧具有很強的氧化能力,其與廢氣中的碳氫化合物(如苯類、烴類、醇類、脂類等)充分混合接觸后,在燈管發射出的254nm紫外線的照射催化條件下,能將這些有害污染物,直接氧化分解為水和二氧化碳。由此可見,紫外燈管發射出的185nm紫外線,起到了提供氧化反應物的作用;而燈管發射出的254nm紫外線,起到了提供光解反應順利進行的必要反應條件的作用。但紫外燈管的臭氧產生能力較低,如現在使用最為普遍的150W U形臭氧紫外線燈管,在氧氣充足的條件下,每小時的臭氧產生量約為900mg左右,即其單位功率每小時的臭氧產生量僅為6mg/w。而臭氧作為光解反應中的一種主要的反應物質,其產生量的多少,直接影響著處理效果的好壞。
等離子技術,是利用高壓的電場,使空氣中的O2電離產生O3,其臭氧產生效率要比紫外燈管高很多。如佛山君睿光電公司生產的60W石英真空等離子管,其每小時的臭氧產生量約為6000mg左右,即其單位功率每小時的臭氧產生量為100mg/w,是紫外燈管單位功率臭氧產生量的16倍。 但等離子管幾乎不發射出紫外線。缺少了紫外線的催化作用,在單純采用等離子工藝的廢氣處理裝置中,臭氧與有機廢氣的反應變得緩慢困難,同樣制約了設備的處理效能。
因此,我們嘗試將這兩種處理方案結合起來。將等離子裝置布置在光解設備的前段,離子裝置產生的O3與有機廢氣混合后,流經紫外線燈管。紫外線燈管能進一步地觸發O3的生成,同時在燈管254nm紫外線的催化作用下,O3與有機物的反應效能大幅提升,從而取得理想的處理效果。由于等離子裝置較紫外燈管高得多的臭氧產生效能,使得設備的功耗隨之降低,節能效果顯著。
現有等離子技術常見的有非真空型及真空型兩類。
非真空型等離子發生器主要為板式和蜂窩式兩種,它們所需的工作電壓很高,約1.5~1.8萬伏,因而對系統的絕緣要求很高。且工作過程中產生的電弧較大,且直接暴露在空氣中,當應用于含有易燃性氣體的廢氣處理工藝中時,存在很大的火災隱患。
而現有的真空型等離子管都是使用軟料玻璃制作,其優點是:1、所需的工作電壓大幅降低,約為2-3千伏,因而對系統的絕緣要求大幅降低,由高壓電火花引燃易燃氣體的可能性也隨之降低;2、所產生的電弧絕大部分被封閉于真空管內,更使得引起火災的可能性大幅下降。但其缺點是軟料玻璃在工作環境溫度變化較大的條件下,很容易產生裂紋,而使管內的真空條件遭到破壞,使其無法繼續工作。其穩定性能很差,壽命短,限制了它在生產中的實際應用。
佛山市君睿光電科技公司新研制的石英真空等離子管(專利號:ZL213715339029.4),以石英作為管壁材料,除具備現在普通玻璃真空型等離子管的優點外,因其石英管壁具有極強的抗溫度變化而不破裂的性能,并采用不銹鋼網代替原來的鋁網,使得這種新型的等離子管能耐受更嚴酷的工作環境,延長了其使用壽命,保證了工作的穩定性。同時由于管壁不易破裂,也消除了由于管壁破裂,電弧外泄而形成的火災隱患,使用更加安全。專門設計配套的等離子電源,也使得離子管的性能得到提升,臭氧產生率有了可靠的保障。
新設計的管頭使用硅膠材料制作,較現玻璃等離子管經常采用的塑料管頭,具有更好的耐腐蝕性能。管頭上的法蘭結構設計,使得安裝也更為方便。
新的石英等離子管的密封,使用工字形夾封結構,而不是現今軟料玻璃工藝中采用的環封結構,使得結構更加堅固,不易破碎。
離子管的長度被設計為81CM,與150W的U形光解燈管等長,因而可被方便地設計安裝到現有的光解設備中。
我們一般建議可將原光解設備中紫外燈管數量的15%-20%,以一只60W石英真空等離子管替代2只150W臭氧紫外線燈管的比例進行替換。如原使用100只150W臭氧燈管的光解系統,我們建議可將其中的20只臭氧燈管,以10只60W等離子管替代。這樣系統的總功率將由原來的約18000W(燈管功率150W+鎮流器功耗30W),降為15060W(離子管功率60W+電源功耗6W),而系統的臭氧產生量卻將由原來的90000mg/h,提升為132000mg/h。這樣系統的能耗將降低約20%,而臭氧產生量反提升約45%。可見既提升了處理的效果,又能節約能源,同時也降低了設備造價。
最佳回答:
光催化技術,就是在光的作用下進行的化學反應。
光化學及光催化氧化法是目前研究較多的一項高級氧化技術。
光催化氧化技術利用光激發氧化將O2、H2O2等氧化劑與光輻射相結合。所用光主要為紫外光,包括uv-H2O2、uv-O2等工藝,可以用于處理污水中CCl4、多氯聯苯等難降解物質。
另外,在有紫外光的Fenton體系中,紫外光與鐵離子之間存在著協同效應,使H2O2分解產生羥基自由基的速率大大加快,促進有機物的氧化去除。
擴展資料
原理
當能量高于半導體禁帶寬度的光子照射半導體時,半導體的價帶電子發生帶間躍遷,從價帶躍遷到導帶,從而產生帶正電荷的光致空穴和帶負電荷的光生電子。光致空穴的強氧化能力和光生電子的還原能力導致半導體光催化劑引發一系列光催化反應的發生。
半導體光催化氧化的羥基自由基反應機理,得到大多數學者的認同。
發展史
1972 年,Fujishima和 Honda在n—型半導體TiO2電極上發現了光催化裂解水反應,在Nature上發表了“Electrochemical photolysis of water at a semiconductor electrode”,揭開了多相光催化新時代的序幕。
進入了90 年代,隨著納米技術的興起和光催化技術在環境保護、衛生保健、有機合成等方面應用研究的發展迅速,納米量級的光催化劑的研究,已經成為國際上最活躍的研究領域之一。
參考資料:百度百科-光催化氧化技術
其他答案1:
在波長范圍170nm-184.9nm(704 kj/mol – 647 kj/mol)高能紫外線的作用下,一方面空氣中的氧氣被裂解,然后組合產生臭氧(見反應①、②);另一方面將惡臭氣體的化學鍵斷裂,使之形成游離態的原子或基團(見反應③);同時產生的臭氧參與到反應過程中,使惡臭氣體最終被裂解、氧化生成簡單的穩定的化合物,如CO2、H2O、SO2、N2等,友健科技自主研發UV光解技術
其他答案2:
運用高能UV紫外線光束及臭氧對惡臭氣體進行協同分解氧化反應,使惡臭氣體物質其降解轉化成低分子化合物、水和二氧化碳,再通過排風管道排出室外
UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),眾所周知臭氧對有機物具有極強的氧化作用,對惡臭氣體及其它刺激性異味有極強的清除效果。
其他答案3:
技術原理:
1.特定波段(253.7nm)的紫外線對惡臭氣體的分子鏈進行分解,將其大分子結構打碎變成小分子結構。
2.特定波段(185nm)波段的紫外線使空氣中的氧分子產生游離態的氧,即活性氧。因游離氧所攜正負電子不平衡,所以需與氧分子結合,進而產生臭氧。
3.在催化劑(TiO2)的作用下,臭氧將打碎的惡臭氣體分子氧化成CO2和H2O等無機物。
其他答案4:
技術原理:
1.特定波段(253.7nm)的紫外線對惡臭氣體的分子鏈進行分解,將其大分子結構打碎變成小分子結構。
2.特定波段(185nm)波段的紫外線使空氣中的氧分子產生游離態的氧,即活性氧。因游離氧所攜正負電子不平衡,所以需與氧分子結合,進而產生臭氧。
3.在催化劑(TiO2)的作用下,臭氧將打碎的惡臭氣體分子氧化成CO2和H2O等無機物。
處理氣體的種類:
氨氣、硫化氫、三氯化碳、己辛烷、丙酮、甲醇、甲基乙基酮、叔丁基甲基醚、二甲氧基甲烷、二氯甲烷、三氯甲烷、甲基異丙基酮、異丙醇、四氯乙烯、三甲胺、甲硫氫、甲硫醇、甲硫醚、苯乙烯、二甲二硫、二硫化碳、硫化物、苯、甲苯、二甲苯等
最佳回答:
-
臭氧由于其強氧化性,呈現出突出的殺菌、消毒、降解農藥的作用,是一種高效廣譜殺菌劑。
-
紫外線可以殺滅各種微生物,包括細菌繁殖體、芽胞、分支桿菌、病毒、真菌、立克次體和支原體等,具有廣譜性。
-
高溫消毒一般采用加熱至120℃左右,保持10~15min,使包括細菌、病毒在內的微生物機體蛋白質組織變性而達到殺滅細菌、病毒的目的。
最佳回答:
在水處理設備中原水在經過處理過后,如果是要達到飲用水
標準的話,那么肯定是會用到殺菌消毒的,目前在水處理這個行業用得最多的就是紫外線殺菌和臭氧殺菌,這兩者一個是使用紫外線燈管進行殺菌,一個是在水中用臭氧,這兩者在本質上沒有多大的區別都是殺菌消毒,但是那種效果更好呢?對于這個技術性的問題,下面就對這兩者產品技術問題進行分析。 食品工業用水處理過程中的臭氧
所使用的水水質必須符合飲用水標準。有的必須在水質極限濃度標準備范轉之內,甚至,根據用途的要求需達到無菌純水,由于食品工業最終成品的種類和工廠的規模不同,情況也是各種各樣的。如果不考慮整個操作過程的經濟性和維護和管理問題,那么,在最終階段采用0.22um或0.45um的薄膜過濾器(MF),有可能達到切實滅菌。
臭氧是強氧化劑。臭氧處理法是利用臭氧分解時,生成的新生態氧的氧化作用和分解能力。 無機物的氧化 A 金屬離子的去除:除鐵、除錳、有機金屬化合物的分解;有害物質的去除:氰、NOx、SOx;亞硝酸等的氧化分解。有機物的改變 A 脫色;B 減少臭味;C 支除有機物的預處理;提高活性炭的吸咐性;D生物去除:殺菌,病例毒的非活化;E 淤泥的去除,F 有機物合成,維生素的制造;一般藥品的制造有機物的完全氧化。
水的紫外線照射滅菌法不是在水中新加入任何不純物,也不是使被處理的水發生任何化學變化,而是在極短的時間內存其設備之內完成滅菌過程。因此,紫外線殺菌方法大多適用于清潔的生產用水滅菌。在儀器工廠用水的微生物控制方面,與制品的質量惡化、腐敗有關的菌種有芽孢菌屬的一般細菌,野生酵母類、絲狀菌類等。
臭氧處理法,除了滅菌作用以外,還有脫色、去臭,使難分解的物質變成容易分解的物質,絮凝作用的改善和提高凈化能力等。因此,在工廠用水和處理方面,臭氧的應用范圍很廣,既可以用于處理原水系,生產用水,也可以處理排水,,但是,作為生產用水使用的來菌手段,,臭氧處理法的復合作用,在有的場合也并不受歡迎。 二 臭氧滅菌法
1 臭氧的滅菌機制和滅菌特性:臭氧分解生成氧和新生態氧。此種新生態氧作用于細菌和病毒等的細胞壁和細胞膜,反應在脂質(類脂化事合物)的雙鍵。在進行這一作用時,細胞膜被破壞,而且SH酵素被破壞,從而達到滅菌的效果。對于芽孢桿(Bacillus)菌細菌孢子,用濃度0.3-0.5mg/l的臭氧滅菌劑即可達到滅菌效果。乳酸菌對臭氧的抵抗力很弱。據報告,初始菌數2.3-5.6×109/ml,經臭氧處理30秒種,細菌大多數死去。 按飲用水標準進行的臭氧滅菌法,接觸反應時間性為5-8分種,臭氧發生器出口處的臭氧濃度為0.4mg/l以上(注入率為2-3mg/l),大多數實例以上述條件為運行管理目標。如果在同樣的系統內,將臭氧的注入率增加至5mg/l,根據實驗結果,經過此種處理的水,一般來說,細菌是不能存活的。
臭氧的殺菌效果,因微生物種類的不同而有很大差異,這是由于的細胞壁或細胞膜的差異遷成的。用臭氧處理芽桿菌屬的細菌孢子和酵母,需要較長時間,但是,若增加臭氧濃度可使反應時間適當的縮短。在實際使用過程中,可根據菌種確定臭氧的濃度和選定接觸反應時間。
2 水的臭氧滅菌方法,不僅是一個滅菌裝置,而應視為一個滅菌系統。為了建立這樣一個系統,須注意事項。
A 臭氧原料的精制:除了借助熒光燈制造臭氧或冷藏庫使用的小型臭氧機外,對于工業規模臭氧發生機,作為臭氧原料的空氣精制除理,除塵、 除濕是非常重要的,一般來說:用無聲放電臭氧發生機產生臭氧的濃度, 以空氣為原料時為1-3%,以氧為原料時,為2-6%,如果這個精制處理過程不充分,那么,有僅臭氧的生產效率低,而且原料中的不純物原封不動地、一部分以氮的氧化物形式進入臭氧處理水理系統。
B 選用具有穩定的臭氧生產能力的臭氧發生機那座建議采用臭氧發生器。近年來,臭氧發生機的開發研制和技術水平顯著提高。市場上出售的臭氧發生器,各種類型都有,如無聲放電式玻璃管式,同極板式,陶瓷表面放電式等,三菱電機,住友精密,富士電機等一流的制造廠商的制品,其性能達到了國際先進水平。從15G/H的小型機到40KG/H的大型機,均可于供臭氧原料的PSA制氧機配套,形成系列化產品。最近加入制造商行列的大手機械制造公司,推出了便攜式臭氧機。
用于食品制造的生產用水的臭氧殺菌方法,最好采用純氧或PSA氧濃縮器來供給臭氧原料。
C 水和臭氧的接觸反應時間:臭氧注入量和接觸反應時間,要根據作為殺菌對象的微生物的種類及目標滅菌率而定。可能是由于建造費用的關系,
D臭氧濃度的管理:為了使臭氧滅菌過程可靠的進行,監測臭氧注入濃度和臭氧溶解度是很重要的,要將他們控制在一個合適的范圍內。現在,除了高精度的連續式臭氧濃度測定器,價格低廉的手提式測定器也已研制出來,所以定期進行臭氧濃度測試,并采取補救措施也是必要的。在水的滅菌過程中,不可避免地要將臭氧排到系統之外,所以必須進行除害處理,使排出的臭氧量在允許濃度之下。 三 紫外線照射殺菌法 1 紫外線殺菌機理和處理特性 波長200-290mm的紫外線,可透過細菌或病毒的細胞膜對控制著遺傳現象和生物機能核酸(DNA)造成損傷,使它失支繁殖能力,從而達到殺菌的目地。
各種微生物對紫外線的敏感程度,因菌種的不同而有差異。根據以芽孢桿菌屬(Bacillus)為對象(含B.subtlis)進行的工廠試驗結果表明,在照射量D10=mw.s/cm2時,殺菌率達到99.5%。為此,實際裝置的設計照射量相當于D10×4,即50mw.s/cm2以上。
核酸(DNA)對于波長250-260mm的紫外線,有特別容易吸收的傾向。這就是為什么這種波長的紫外線殺菌能力最強的緣故。按照要殺滅的微生物所需的紫外線照射量進行來菌處理,而又不使水質發生任何變化,在極短時間內進行一閃性滅菌,效果良好。而且,這種處理是在直管流通型的裝置內完成的。
在紫外線殺菌方面,殺菌力的大小以相對于處理水時的紫外線照射量mw.s/cm2(紫外線照射強度[mw/cm2×時間])來表示。紫外線照射擊量的大小與殺菌率的大小有相關關系。
其他答案1:
你好,臭氧能破環分解細菌的細胞壁,迅速進入細胞內氧化酶系統,或破環細胞膜和組織結構中的蛋白質和核糖核酸,導致細胞死亡。紫外線是一種物理消毒方法,外線光子能量能夠破環各種病毒、細菌以及致病微生物的遺傳系統結構,經紫外線照射微生物DNA結構建斷裂和發生光學聚合反應,DNA失去復制繁殖能力,進而達到消毒霉菌的目的。
最佳回答:
等離子滅菌除臭技術原理等離子體具有較高的熱動能,與空氣中的分子碰撞會發生一系列物化反應并產生多種活性自由基和生態氧。活性自由基能在瞬間高速擊穿、蝕刻.氧化微生物的蛋白質和核酸。
uv光解原理:
一、惡臭氣體利用排風設備輸入到本凈化設備后,凈化設備運用高能UV紫外線光束及臭氧對惡臭氣體進行協同分解氧化反應,使惡臭氣體物質其降解轉化成低分子化合物、水和二氧化碳,再通過排風管道排出室外。
四、利用高能UV光束裂解惡臭氣體中細菌的分子鍵,破壞細菌的核酸(DNA),再通過臭氧進行氧化反應,徹底達到脫臭及殺滅細菌的目的.
二、本產品利用特制的高能高臭氧UV光束照射惡臭氣體,裂解惡臭氣體如:氨、三甲胺、硫化氫、甲硫氫、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC類,苯、甲苯、二甲苯的分子鍵,使呈游離狀態的單分子被臭氧氧化結合成小分子無害或低害的化合物,如CO2、H2O等。
三、利用高能高臭氧UV紫外線光束分解空氣中的氧分子產生游離氧,即活性氧,因游離氧不穩定需與氧分子結合,進而產生臭氧。UV+O2→O-+O*(活性氧) O+O2→O3(臭氧),眾所周知臭氧對有機物具有極強的氧化作用,對惡臭氣體及其它刺激性異味有立竿見影的清除效果。
最佳回答:
UV光解(也就是高能光氧)是利用UV燈照射氧氣 氧氣變成臭氧 利用臭氧的強氧化性去分解廢氣分子。都是一樣的 只不過高能光氧名字好聽點而已–來自萬川環保
其他答案1:
貌似是一種技術原理,只是說法不一樣。uv光氧催化廢氣處理設備利用特定波長的高能紫外線光束迅速分解空氣中的氧分子和水分子,使得有機氣體徹底分解為CO2和H2O,同時紫外光具有的強大的能量對揮發性有機氣體進行協同分解氧化反應.將大分子有機氣體鏈結構斷裂.使有機氣體物質轉化為低分子化合物或者完全氧化,生成H2O和CO2。
正藍環保技術資料
其他答案2:
本產品采用高能高臭氧UV紫外線光束、氧化反應催化劑、高能離子發生裝置的組合工藝來降解有機廢氣,改變惡臭、刺激型氣體如:氨、三甲胺、硫化氫、甲硫氫、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC類、苯、甲苯、二甲苯的分子鏈結構,使有機或無機高分子惡臭化合物分子鏈,通過高能紫外線光束照射、催化劑的氧化反應、正氧離子的氧化反應,降解轉變成低分子化合物,如CO2、H2O等。
一、工藝原理如下:
1
、利用高能高臭氧紫外線光束分解空氣中的氧分子產生游離氧,即活性氧,因游離氧所攜正負電子不平衡所以需與氧分子結合,進而產生臭氧。UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),眾所周知臭氧對有機物具有極強的氧化作用,對有機氣體及其它刺激性異味有立竿見影的清除效果。有機性氣體利用排風設備輸入到本凈化設備后,運用高能紫外線光束及臭氧對有機(異味)氣體進行協同分解氧化反應,使有機氣體物質其降解轉化成低分子化合物、水和二氧化碳,再通過排風管道排出室外。
2
、高能離子空氣凈化系采用正負雙極電離技術。在電場作用下,離子發生器產生大量的 a 粒子, a 粒子與空氣中的氧分子進行碰撞而形成正負氧離子。正氧離子具有很強的氧化性,能在極短的時間內氧化分解甲硫醇、氨、硫化氫等污染因子,且在與 VOC 分子相接觸后打開有機揮發性氣體的化學鍵,經過一系列的反應后最終生成二氧化碳和水等穩定無害的小分子。同時氧離子能破壞空氣中細菌的生存環境,降低室內細菌濃度。帶電離子可以吸附大于自身重量幾十倍的懸浮顆粒,靠自重沉降下來,從而清除空氣中懸浮膠體達到凈化空氣的目的
2
、催化劑(二氧化鈦)在受到紫外線光照射時生成化學活潑性很強的超氧化物陰離子自由基和氫氧自由基,攻擊有機物,達到降解有機物的作用。二氧化鈦屬于非溶出型材料,在徹底分解有機污染物和殺滅菌的同時,自身不分解、不溶出,光催化作用持久,并具有持久的殺菌、降解污染物效果。
二、 產品性能綜述
一、高效降解有機化學物:能高效去除揮發性有機物(VOC)、無機物、硫化氫、氨氣、硫醇類等主要污染物,以及各種惡臭味,脫臭效率可達99.9%以上,脫臭效果大大超過國家1993年頒布的惡臭污染物排放標準(GB14554-93).
二、無需添加任何物質:只需要設置相應的排風管道和排風動力,使氣體通過本設備進行脫臭分解凈化,無需添加任何物質參與化學反應。
三、適應性強:可適應高濃度,大氣量,不同有機化學氣體物質的凈化處理,可每天24小時連續工作,運行穩定可靠。
四、運行成本低:本設備無任何機械動作,無噪音,無需專人管理和日常維護,只需作定期檢查,本設備能耗低,(每處理1000立方米/小時,僅耗電約0.1度電能),設備風阻極低<30pa,可節約大量排風動力能耗。
五、無需預處理:廢氣無需進行特殊的預處理,如加溫、加濕等,設備工作環境溫度在攝氏-30o-95o之間,濕度在40%-98%之間均可正常工作。
六、設備占地面積小,自重輕:適合于布置緊湊、場地狹小等特殊條件。
三、
適用范圍
煉油廠、橡膠廠、化工廠、家具廠、制藥廠、污水處理廠、垃圾轉運站等惡臭氣體的脫臭凈化處理。
處理濃度:100-1000(mg/L)
適用領域:噴漆,印刷,涂料等行業 處理風量:500-50000(m3/h)
種類:有機廢氣處理成套設備 加工定制:是
HXY 系列光氧催化有機廢氣凈化(除臭)凈化設備產品介紹
產品技術原理
一、本產品利用特制的高能高臭氧UV紫外線光束照射惡臭氣體,改變惡臭氣體如:氨、三甲胺、硫化氫、甲硫氫、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯,硫化物H2S、VOC類,苯、甲苯、二甲苯的分子鏈結構,使有機或無機高分子惡臭化合物分子鏈,在高能紫外線光束照射下,降解轉變成低分子化合物,如CO2、H2O等。
二、利用高能高臭氧UV紫外線光束分解空氣中的氧分子產生游離氧,即活性氧,因游離氧所攜正負電子不平衡所以需與氧分子結合,進而產生臭氧。
UV+O2→O-+O*(活性氧)O+O2→O3(臭氧),眾所周知臭氧對有機物具有極強的氧化作用,對惡臭氣體及其它刺激性異味有立竿見影的清除效果。
三、惡臭氣體利用排風設備輸入到本凈化設備后,凈化設備運用高能UV紫外線光束及臭氧對惡臭氣體進行協同分解氧化反應,使惡臭氣體物質其降解轉化成低分子化合物、水和二氧化碳,再通過排風管道排出室外。
四、利用高能UV光束裂解惡臭氣體中細菌的分子鍵,破壞細菌的核酸(DNA),再通過臭氧進行氧化反應,徹底達到脫臭及殺滅細菌的目的.
產品性能綜述
一、高效除惡臭:能高效去除揮發性有機物(VOC)、無機物、硫化氫、氨氣、硫醇類等主要污染物,以及各種惡臭味,脫臭效率可達99.9%以上,脫臭效果大大超過國家1993年頒布的惡臭污染物排放標準(GB14554-93).
二、無需添加任何物質:只需要設置相應的排風管道和排風動力,使惡臭氣體通過本設備進行脫臭分解凈化,無需添加任何物質參與化學反應。,
三、適應性強:可適應高濃度,大氣量,不同惡臭氣體物質的脫臭凈化處理,可每天24小時連續工作,運行穩定可靠。
四、運行成本低:本設備無任何機械動作,無噪音,無需專人管理和日常維護,只需作定期檢查,本設備能耗低,(每處理1000立方米/小時,僅耗電約0.1度電能),設備風阻極低<30pa,可節約大量排風動力能耗。
五、無需預處理:惡臭氣體無需進行特殊的預處理,如加溫、加濕等,設備工作環境溫度在攝氏-30o-95o之間,濕度在40%-98%之間均可正常工作。
六、設備占地面積小,自重輕:適合于布置緊湊、場地狹小等特殊條件,設備占地面積<1平方米/處理10000m3/h風量。
七、優質進口材料制造:防火、防腐蝕性能高,性能穩定,使用壽命長。
附加工藝一說明、高能離子空氣凈化系采用正負雙極電離技術。在電場作用下,離子發生器產生大量的 a 粒子, a 粒子與空氣中的氧分子進行碰撞而形成正負氧離子。正氧離子具有很強的氧化性,能在極短的時間內氧化分解甲硫醇、氨、硫化氫等污染因子,且在與 VOC 分子相接觸后打開有機揮發性氣體的化學鍵,經過一系列的反應后最終生成二氧化碳和水等穩定無害的小分子。同時氧離子能破壞空氣中細菌的生存環境,降低室內細菌濃度。帶電離子可以吸附大于自身重量幾十倍的懸浮顆粒,靠自重沉降下來,從而清除空氣中懸浮膠體達到凈化空氣的目的
附加工藝二說明、催化劑(二氧化鈦)在受到紫外線光照射時生成化學活潑性很強的超氧化物陰離子自由基和氫氧自由基,攻擊有機物,達到降解有機物的作用。二氧化鈦屬于非溶出型材料,在徹底分解有機污染物和殺滅菌的同時,自身不分解、不溶出,光催化作用持久,并具有持久的殺菌、降解污染物效果。
適用范圍:
煉油廠、橡膠廠、化工廠、制藥廠、污水處理廠、垃圾轉運站等惡臭氣體的脫臭凈化處理。帝龍科技主要經Mr.馮先生13715339029
最佳回答:
技術原理:
1.特定波段(253.7nm)的紫外線對惡臭氣體的分子鏈進行分解,將其大分子結構打碎變成小分子結構。
2.特定波段(185nm)波段的紫外線使空氣中的氧分子產生游離態的氧,即活性氧。因游離氧所攜正負電子不平衡,所以需與氧分子結合,進而產生臭氧。
3.在催化劑(TiO2)的作用下,臭氧將打碎的惡臭氣體分子氧化成CO2和H2O等無機物。
處理氣體的種類:
氨氣、硫化氫、三氯化碳、己辛烷、丙酮、甲醇、甲基乙基酮、叔丁基甲基醚、二甲氧基甲烷、二氯甲烷、三氯甲烷、甲基異丙基酮、異丙醇、四氯乙烯、三甲胺、甲硫氫、甲硫醇、甲硫醚、苯乙烯、二甲二硫、二硫化碳、硫化物、苯、甲苯、二甲苯等